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ABSTRACT

An algorithm is described for determining the optimal solution of
parametric linear and quadratic programming problems as an explicit piece-
wise linear function of the parameter. Each linear function is uniquely
determined by an appropriate subset of active constraints. For every crit-
ical value of the parameter a new subset has to be determined. A simple
rule is given for adding and deleting constraints from this subset.
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SIGNIFICANCE AND EXPLANATION

In many applications of linear and quadratic programming it is
necessary to obtain an optimal solution for more than one set of input
data. In particular, if the right hand sides of the constraints Ax < b
can be interpreted as capacities, it might be useful to study the behavior
of the optimal solution if b is replaced by ¢ + tp, where t is a
parameter which varies in some intervall, say [t, t1. Similarly, if the
coefficients of the objective function c¢'x are prices, it is sometimes
desired to compute the optimal solution for all objective functions of the
form (c + tg)'x for te [t,t].

Parametric problems of this type have the following basic property.
There are critical values t = to < t1 < ... < tv = t such that the
optimal solution is a linear function of t for tj < tz< tj+1 . This
linear function can be computed from a linear system of equations which
is determined by a certain set of active constraints. For each critical

value of t this set of active constraints changes.

It can happen that for some critical values of t the new set of
active constraints differs from the previous one by several constraints.
In this case determination of the correct set can be tedious. This diffi-
culty can be overcome by a simnie selection rule which results in a finite
number of intermediate sets which differ from each other by exactly one
constraint. Therefore, ihe problem reduces to the simple case of con-
secutive sets of active constraints which are obtained from each other by
adding or deleting or exchanging exactly one constraint, . -
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ON PARAMETRIC LINEAR AND QUADRATIC
PROGRAMMING  PROBLEMS

Klaus Ritter

1. Introduction

In practice it is often important to study the behaviour of the opti-
mal solution of a linear or nonlinear programmina problem if some of the
data change. In this paper we consider linear und convex quadratic minimiza-
tion problems with the property that the right hand side of the constraints
and/or the linear part of the objective function depend linearly on a para-
meter t which varies in a certain intervall. It is known [3] that in these
cases the optimal solution is a piecewise linear function of the parameter.
There is a finite number of critical values of the parameter for which the
representation of the optimal solution as a function cf t <changes. These
critical values are characterized by the fact that the set of constraints,
active at the optimal solution changes. In a reaular case when exactly cne
active constraint becomes inactive or exactly one inactive constraint be-
comes active it is not difficult to find the new representation of the
optimal solution as a function of t . However, in a deqenerate situation
where for a critical value tj of the parameter several constraints be-
come newly active and/or several multipliers become zero, it may be tedious
to find the correct set of constraints which determine the optimal solution
for t > tj .

It is the purnose of this paper to describe a method which can be used
to overcome these difficulties. For every value of the parameter for which
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the given problem has an optimal solution, the Kuhn-Tucker-conditions

(see e.g. [2]1) and an appropriately chosen set of constraints can be used
to determine the optimal as a function of the parameter by solving a linear
system of equaticns. For a reqular critical value of t the selected set

of constraints is changed in one of the following ways. Either a constraint
is added to the set or a constraint is deleted from the set or both. In a
degenerate case it could be necessary to repeat this procedure several times
before the correct set of constraints is obtained. In order to avoid cycling
the selection of the constraint that enters or leaves the considered set

has to be made with some caution. It is shown that cycling does not occur

if the following rules are used. First, adding a constraint to the selected
set has priority over deleting a constraint from the set. Second, if there
are several candidates for entering or leaving the set in each case the

one with the smallest index will be chosen. The advantage of this method

is that recular and degenerated critical values of t are treated in the
same way. The only difference is that in the degenerate case more than one
change of the selected set of constraints could be necessary.

In the following section we qgive a precise statement of the problem
and establish some preliminary results. In Section 3 basic nroperties of
parametric quadratic programming problems and their relation to the proposed
method are given. In the final section an alaorithm is described for comnu-
ting the ontimal solution as an explicit function of the parameter. It is
shown that it terminates after a finite number of iterations.

2. Formulation of the problem and preliminary results

et ¢, g, and x be n-dimensional column vectors and let A and
b v i th

AY = (al,...,am) [ bf = ((b)l""’(b)m)

b an (m,n)-ratrix and an m-dimensional column vector, resrecti.eis. Further-
more, assume that C 1is a symmetric positive semi-definite (n,n)-matrix. We

consider the preblem of determining the optimal solution to




min{(c+tq)'x+%x'CX|Ax < b+tp} (2.1)

as an explicit function of the parameter t for all values of t with
tstst.

If C=0, then the parametric quadratic programming problem (2.1) reduces
to a parametric linear programming problem.

Because C s assumed to be positive semidefinite it follows from the
Kuhn-Tucker-Theorem (see e.g. [21), that x 1is an optimal solution to (2.1)
if and only if there is a vector u € E™ such that

Cx+A'u = -(c+tq)
A x < b+tp (2.2)
u'(Ax-b-tp) = 0, u 0.

Treughout this paper we assume that
rank (C,A*) = n. (2.3)

Th2 purpose of this assumption is to guarantee that if (2.1) has an optimal
solution for some t it also has an optimal solution, X say, which is the
unique optimal solution in the intersection of the constraints that are active
at x . This fact is established in the following lemma.

Lemma 1

If rank (C,A') = n and (2.1) has an optimal solution for some t ,
then there is a set [ < :1,2,...,m} and an optimal solution x of
(2.1) such that

i) The vectors a i €1, are linearly independent

i’
i1) X 1is the unique optimal solution to the problem

mm{(c+me+;>UCx!a%x=(bh +tmh, iel} .

Proof: \
For t =1t let Xq = xo(t) be any ontimal solutiecn to (2.1). Cefine the set
loe il,2,0..,m such that § € 1. if and only if

-3 -




a% X = (b)i + %(p)i .

0
If Xo is the unique optimal solution to the problem
min{ (c4-gq)'x + % x'Cx | a% X = (b)i + t(p)i , 1€ Io} (2.4)

it suffices to set x = io and to choose any maximal subset I < Io such

that the vectors a5, i €1, are linearly independent.

Now suppose that io # X, s an optimal solution to (2.1). Set

s = xO - X, and

QU:E)= k+€q)%-+%x%x.

Then it follows from the convexity of Q(x; t) that

Q(xoms;E) =Q<xo;”t) for all - . (2.5)

This imnlies that s'Cs = 0 and, because C 1is positive-semidefinite,
Cs = 0. Therefore, it follows from (2.3) and the relations

ats =0, i€l (2.6)

that there is i, i ¢ IO , such that a% s + 0. Hence we deduce from

(2.5) and (2.6) that, for some Oy »

Xy = Xg + 048
is an optimal solution to (2.1) with

a% xl = (b)i + t(p)i , 1E€ Il s
where Io c I1 and Io + I1 . Repeating this argument if necessary we

obtain an optimal solution Qv to (2.1) and a set I < {1,2,...,m} such
that x is the only optimal solution to (2.1) which satisfies the equatiaons

alx = (b); + tlp); , i€l (2.7)

1

\

Setting x = x  and choosing any maxiral subset I « I such that the
vectors 4., i €I, are linearly independent completes the proof of the

lemma.




In the following sections we will associate with each * € (t, &
for which (2.1) has an optimal solution a matrix A and an optimal solution
X with the properties specified in the above lemma. Let

alx < (b) + t(p), (2.8)

~

be any constraint which for t =t 1is active at the optimal solution X .
Then this constraint is said to be a primary active constraint if a is a
column of A', If a, is not a column of A' , then (2.4) is referred to
as a secondary active constraint.

For later reference we prove the following lemma.

Lemma 2
The matrix

=

"
> (@]
- -
o >

is nonsingular if and only if the following conditions are satisfied
i) The columns of A' are linearly independent.

i) x'Cx >0 forevery x +0 with Ax =0 .

Proof:
First assume that the conditions of the lemma are satisfied. Let (§,§) be
any solution of the equations

(2.9)

Then x'Cx = - §'ﬁ X =0 implies x = 0 . Thus ﬁ'§ = 0 and, therefore,
y = 0 . This shows that !! is nonsingular.

[f the columns of A' are linearly dependent it follows immediately
that M is singular. Finally, if there is x + 0 with x'Cx = 0 and
A; =0, then Cx =0 and (i, ) s a solution of the equations. Hence,
M is sinaglar.




coTT T T T

3. Basic properties of parametric quadratic_and linear programming problems

For t = tj let Xy = xj(t) be an optimal solution to (2.1) for which

assumption (2.3) is satisfied. Re-numbering constraints if necessary and
using Lemma 1 we can assume that

ay x; = (0)g + tgp)y s d=liieao
at x; < (b)y +t

X .(p)i , d=p+l,...,m

J

and x; 1is the unique optimal solution to

J

j”d}’

: 1 1., _
min {(c+tjm X + % x'Cx |ij'bi+t

where, for some v <o,

and the columns of A3 are linearly independent.

Let uj = uj(tj) > 0 be such that

! = - .
ij(tj) + A uj(tj) = h:+t3q)
with <uj)i =0 for i=v+l,...,m . Then the optimality conditions (2.2) can
be written in the form

Cx.(t) + Abv.(t) = - (c+taq)

j AN (3.1)
AJ XJ(t) = bJ+th ’
al xj(t) < (b)1 + t(n),, i=v+l,....m (3.2)
vj(t) >0, (3.3)

where




Since by Lemma 2,

g (M M
M.® =
J
M350 Mo
exists.
Setting
hlj = - Mlj(c-+tjq) + sz(bj-+tjpj) R h2j = - Mqu + szpj
95 = - M3j(c-+tjq) + M4j(bj-+tjpj) v 95 = - M3jq + M4jpj
we obtain from (3.1) the relations
xj(t) = - Mlj(c4-tq) + sz(bj+-tpj) (3.4)
and
vj(t) = - M3j(c-+tq) + M4j(bj+-tpj) (3.5)

Substituting xj(t) into

[}
a; hlj + (t- tj) a;

or
(t' t])(a:, th - (p)

Therefore, xj(t) is a f

inequalities are satisfie

Because hlj = x.{t

(3.2) we have, for i=v+l,...,m , the inequality

h < (b); + t.

J(p)i + (t't')(p)1 (3.6)

23 J

;) < (B); + ti(p); - abh

g7 1j -

easible solution for all t > 0 for which these
d.

it follrus from (3.2) that

-7 .




(b)i + tj(p)i - a% hlj 2 0 ’ 'i=\)+1,...,m (3.7)

. * =
If (a3 h2j - (p);) =0, i=v+¢l,...,m , set tj+1 = = , otherwise set

(b): + t.(p); - a} hy.
* min { j A i 13

t.., = t;, = a: ho: ~ (p); >0 } (3.8)
J . _ i 2] i
a; th (p)i

j+1
and Tet k be the smaliest index for which the minimum is attained.

Because of (3.7) we have tf+1 > tj . Define the set I of critical

J 1j

indices as follows
I ={ii(b)i+tj(p)i-ai'hlj =0 and a} hys - (p) > o} .

Clearly, tf =0 .

41~ tj if and only if I

13
If Ilj £+ 0, then xj(t) , as defined by (3.4), is not feasible for
any t > tj . Thus at least one of the secondary active constraints must be-
come a primary active constraint. We choose the constraint with index
k = min{i‘iel 1 (3.9)
1j f

The computation of the new matrix Mj+1 is discussed below.

Suppose now that Ilj = @ and observe that by (3.3) we have

vilts) = 9520, (3.10)

If a,. 20, then vj(t) 20 forall t= tj . In this case we set
= o 4 otherwise set

~ ) (9934 .
tj+1 - tj = min {-(q 3)1 l (sz)i <0 } (3.11)
23714

and let 1 be the smallest index for which the minimum is attained. Because of
13.10), tj+1 > tj . With

Igj = { i ‘(glj)i = 0 and <99j)1 <0 }

it follows immediately that E&+1 > *t. ifand only ¢ 1,. =0 .

j

-9 -




If 12j + P, then xj(t) is not optimal for any t > tj . Thus at

least one of the nrimary active constraints must become a secondary active
constraint. We choose the constraint with index

)

1= min{i[imzja.

L

(3.12)

The new matrix M, is derived below.

j+1
Set I,,j =@ . Inorder for xj(t) to be an optimal solution *: (2.1),

both the inequalities (3.6) and (3.5) have to be satisfied. Thus we set

* -~

. 3
t. 1 = m1n{t3+1 » tJ+1'P.

J+

Then the following lemma holds.

Lemma 3
There is tj+1 > tj such that

i) xj(t) = hlj + (t- tj)hzj is an optimal solution to (2.1)

for all t with tj <t< tj+1 .
i) There is no t > tj+1
Tution to (2.1) for t =t .

such that xi(t) is an ontimal so-

iii) tj+1 > tj if and only if Ilj U I2j = 2.
We now discuss the computation of the new matrix Mj+1 .
Case 1:
Either Ilj + 0 or Ilj I?j = @ and ‘i t§+] In either case
the constraint
aé X < (b)k + t(p)k (3.13)

has to be added to the set of primarv active constraints. There are *wo cases
depending on whether a, is an element of span fal,...,an ~ or not. In
order to decide which case applies we consider the equations

-9 -




Cw + Ajz = 3
A1 W = 0 )
from which we obtain

Clearly, a, € span {al,...,av } if and only if w=20.

First assume that a, ¢ shan {al,...,av } . In this case we set

3+1 N (A3 ! ak)
and .
Mj+1 - ¢ AJ+1
AJ.+1 , 0
Since the columns of A'+1 are linearly independent it follows from Lemma 2
that Mj+1 is nonsingular.

Next assume that w = 0 . Since in this case the vectors 81500053 58,

ara linearly dependent we have to determine a constraint
ai x < (b)] + t(p)]

in the cet of primary active constraints which will be replaced by (3.13).
This can be done by using the vector 2z as defined by (3.14). If z <0,
it follows from Lemma 6 in the next section that (2.1) has no feasible solu-

ticn for t > tj . If 2z has at least one positive comnonent let the set
T,j be defined such that i € I3j if and only if
(974) (9;:),
U L nin { 1] | (z), >0 }
(Z)i (Z)v ‘
and set
A
1 = min 1 ‘ i€ I ¢

I+ is not difficult to verify that with this choice of 1 the aradients
of the new sat of nrimary active constraints are linearly independent and that .
thare are ‘1 > 0 such that




\
-(c+tjq-Cxﬂtﬁ) = 1§1x1% + A .
i%]
Furthermore, if Ilj £ 0 it follows from Lemma 7 that the above rules for
choosing k and 1 ensure the existence of an jl > j such that I1j1 =0 .
Case 2:

. _ v *
In either case the constraint

ai X £ (b)] + t(q)]

has to be deleted from the set of primary active constraints. If C is not
positive definite in the set

T = {xla;.“o, i=l,. .., 1*1} (3.15)

or if there are secondary active constraints at xj(tj) it may be necessary

to add a constraint

a& X < (b)k + t(q)k

to the set of primary active constraints. In order to decide this we denote
the 1-th column of sz by S and the element in the 1-th row and 1-th
column of M4j by w . Then it follows from Lemma 4 that C is positive
definite in the set (3.15) if and only if w <0 . Furthermore, if w<?O0,
then

xi() = oglt-ty)s) = hpo+ (t-ti)(hy =nps))  (3.16)

is the unique optimal solution to the problem

sl .y, u]},

min { (c+tg)'x + % x'Cx a:x = (b); + t(n),

(95:)
where v = %3 ] and 5 is the vector used in (3.5). If there are second-
ary active constraints at xj(tj) s, [7.25) need not be a feasible solution to
(2.1) for any t > tj . Therefore, we define the set

. L] I ]
I4j = { il alsy <" and aj hlj = (b), + tj\p)i ?

- 11 -




and, if I4j £ P, the number

(p); ~ 4 hoys

T, = min { -——l————l-gi I i€ 14- } .

0 -a's J
i~1

If o,<71,, then (3.16) will be a feasible solution to (2.1) for t > tj

sufficiently small.

Therefore, if w < 0 and Uy < T, MO new primary active constraint is
needed. If w <0 and % > Ty * then a secondary active constraint will
become a primary active constraint. Finally, if w =0 and I4j = { then

the problem

min { (c+tq)'x + %

x'C x a%x = (b); + t(p;) » i=l, .., 1] }
has no optimal solution for t > tj (see the proof of Lemma 6). In this case
either (2.1) has no optimal solution for t > tj or there is some T2 0

and some index k such that aks]_< 0,
xj(tj) - Tl Sl

is an optimal solution to (2.1) and & xj(tj) - Tapsy = (D)t tj(p)k s

vhere 8} and k are determined by inserting x.(t

j j) - tsy into the

inequalities

atx < (b),

it t(p)i , J=vtl,...,m

which are not active at xj(tj) and computing the largest value of 1 for
5(t5)
Step 3.3 of the algorithm described in the next section.

which x - 19, is feasible. Details of this procedure are aiven in

It follows from Lemma 9 that the above rules for changina the set of
primary active constraints ensure the existence of an j1 > J such that
Ilv =@, v=73, j+l, ...,.j1 , and IZw = { .




4, An algorithm for solving parametric linear and quadratic programming
problems

In this section we describe an algorithm for computing the ootimal
solution to problem (2.1) as an explicit function of the parameter t .
It is assumed that, for t =1t , the algorithm starts with an optimal solu-

tion xO(E) to nroblem (2.1) which has the properties described in Lemma 2.1.

A general cycle of the algorithm consists of four steps. At the begin-
ning of the j-th cycle the following data are available:

Mo, M,
wl o | W72 h

s h
M35 Ma

2j° .qu, QZJ, J(X) and ‘)j .

1j° h|

Here Vj denotes the number of primary active constraints. The elements
%5 of the index set J(xj) are positive integers and are defined in such a
way that 4 = k 1if and only if the i-th column of the matrix Aj is equal
to 3 > the gradient of a primary active constraint. Then

. c,;\j)
J As o

15 - C - t q
915 b + t D

=
t

and

where bj and pj are appropriate subvectors of b and p , respectively.

In Step 1.1 and Sten 1.2 the critical sets I1e and Iﬂj are deter-
mined which contain the indices of secondary active constraints which are not
satisfied for t > tj and multipliers which are neaative for t > tj , re-
spectively. If both sets are empty Step 3.1 is used to compute the maximal
tj+1 > tj such that

x.{t) = h

j FRL A

23
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is an optimal solution to nproblem (2.1) for t, <t < t

In Step 2 it is determined whether a the gradient of the con-
straint that becomes a new primary active constraint, is linearly dependent
on the gradients of the present set of primary active constraints. If this
is the case then a constraint is selected which has to be deleted from the
set of primary active constraints,

In Step 3 a constraint ai X < (b)1-+t(p)] is given which will be
dropped from the set of primary active constraints. If the problem

Mn{(c+tqrx+~%xmx !a%x=(bh +tW)i’i eJ(%)— H}}

has a unique optimal sclution which satisfies the inequalities Ax <b + tp

for t > sufficiently small, then no new primary active constraint is

tj+1
required; otherwise a constraint is determined that will be added to the set

of primary active constraints.

In Steo 4, the matrices A. and Mfl

j+1 j+1 are computed.

Next we give a detailed description of a qgeneral cycle of the algorithm,

1.1 Define the set Ilj such that 1 € Ilj if and only if

(b)i + tjip)i - a% hlj = 0 and a; h2j - (p)i >0.

15 ° @ go to Stepo 1.2; otherwise set
k = min { 1( i€ Ilj } , tj+1 = tj

and go to Step 2.

If I

1.2 Tefine the set I7j such that 1 € Ioj if and only if

<

i - {
quJ)_‘ - O and \QZJ)i < O .
If IZj = qo to Step 1.3; otherwise set
. : o,
1 = min i ST € I2j EEST tj
and ao to Step 2.1.
- 14 -
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1.3 If ajhys - (p); <0 for i=l,...,m set £ -t =, otherwise

j*1 7
ot (b) (p)
.+ t.(p), - alh,.
* . i AAEA i71j )
t;. . - t. = min a:h,; - (p); >0 }
ATS RS 1 ; ) iN2j i
3 th (p)i

and let k be the smallest index for which the minimum is attained.
If 92j >0 set tj+1 - tj = o , otherwise set

~ (gl.).
- = mi J’1
tj+1 tj min { ) I (92j)1 <D0 }
-(qu i
and let 1 be the smallest index for which the minimum is attained.
Set
- 9 * T
tigp = min {tj+1’ tj+1}
and print

e » » *
If tj+1 >t stop; otherwise do the following. If tj+1 = tj+1 g0

~

to Step 2. If tiy =t < t;+1 go to Step 3.1.

Step 2 ]

Compute
w o= Mljak'

If w+0 go to Step 4.1, otherwise compute

z = M3j a -
If z<0 stop with the message that the problem (2.1) has no feasible
solution for t > tj+1 . If 2z has at least one positive component

define the set I3j such that 1 € I3j if and only if

(97:); aq:).
LRI min { E—li—i (z)v > 0} .
(z); (Z)v
Set
1 - min{xij |1el3j}

and ao to Sten 4.3,

- 15 -




Step 3

3.1

3.2

3.3

I4j = {1’|a;.51<0 and a: hlJ = (b)i +tj(p)'i} .

If I @ and w =0, go to Step 3.3.

43

"

If 1 P and w+ 0, go to Step 4.2.

43
If I4j +#+ 0 , compute

(p); ~ ath
T, = min { AR I R 2] '1 €1, }
° - a S

1
and Tet k be the smallest index for which the minimum is attained.
If Ty > 0, go to Step 3.2; otherwise compute
w = Mljak

If w#0, go to Step 4.1; otherwise go to Step 4.3.

If o+ 0 and

(95:)
if ! <T, s 90 to Step 4.2; otherwise go to Step 4.3.

Set

1; - {ila%sl<0 and alhy; < (0); + ty(p); p .

If I5j = P, stop with the message that there is no optimal solution
for t > tj+1 . If 15j £+ 0 , compute

(b); + t. .~ ath,.
- = min{ i+ 5Py 7 2 hy ’iel."
1 Cals 55
i1
and set
(b); + ts(p), - aih
- ; - Jtra 1j
163._{16153.'11- — }
as sy
Compute

(p); - ath,,
min { ——1 8 |51

T
2 '

and let k be the smallest index for which the minimum is attained. Go
to Step 4.3.

- 16 -
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Step 4

4.1: Set vj+1 = vj+1 and Jj+1 = {al’j+1,...,mvj+l,j+1} » Where
Xy s = o,y d=ly0..,vs ., a . =k .
i,j+1 iJ J vj+1.\1+1

4.2:

4.3:

4.4:

Go to Step 4.4.

Set Vipl T Yy T 1 and Jj+l = {al’j+1,...,avj+l’j+1} , where
ai,j+1 = d,ij s i=1,..-,]-1
%i,5+1 T %41,5 i=1,...0,-1
Go to Step 4.4,
Set \.)J-+l = \\j and JJ+1 = {al,j*‘l,..',n\)j*_l’j'{'l} s Whel"e
”li,\j"'l = Yij . i-—-l,...,\)j ’ 1. + .1
f'l],j+1 =k .
Go to Step 4.4.
Set
A = a
j+1 (q PR . >
\ 1,j+1 vj+1,3+1
v = [(b) veets(b) >
j+1 K s n ;
1,j+1 ”j+1’3+1
= () (p)
j+1 = y . 9+ 00y !) X
\ 1,j+1 J'+19J+1/
' V] L]
W R 1 oo e "5
j+l J+ ;
Ajep » O 3,501 0 Ma a1
- 17 -
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/
hl.j+1\ "o Mo [T E T tad
92,541/ \M3,541 > Maje1 / \Pje1 * tj41Pjn1

h M

2,541 1,5+1 * M2,5+1 - q

M » M

92,3+1 3,j+1 * "4,j+1 Pj+1 .

Replace j with j+1 and go to Step 1.1.

In the following we prove some lemmas which establish the basic prop-

erties of the algorithm. The first two lemmas are concerned with the exist-
ence of M}ll

Lemma 4
Let sy = (sz)] and = (M4j)1] be defined as in Step 3.1 of the
algorithm and assume that

X'Cx>0 for x+0, xE€ { X { a% x=0, 1€ Jj }

i) Then .

x'Cx >0 for x £ 0, x€T={x|a%x=0, 1'€Jj-{'l}}

if and only if w < O .

0

is the unique optimal snlution to the nroblem

1

. . : \ . ]
mni(c+mjx-+7xCx aix=(bh +tm)i,1€dj-f1yp (4.1)
Proof:
Set Sp = (M4i)1 . Then
Y, Csy+Als, =0, ais; =0, i€ dy-

and
aSl=1
- 18 -




Thus

Slcsl = - Si AJ' 52 = = (52)] = = (M4j)1]= - w . (4-2)

let x €T and x # 0 . Then there are X and y such that A3y =0
and x =y + xsl . Therefore,

~

y'Cy +2asjCy +A%siCs, (4.3)

2
y‘Cy+,\51Csl,

x' Cx

1

because si(:y = - séAj‘y =0 . Since sy € T, the first part of the lemma
follows from (4.2) and (4.3).

In order to prove the second part of the lemma we first observe that

al(x;(t) - op(t-ts,p)sy) = (B); + tlp)y » i€dy - (I}

Furthermore,

Cxﬂt)+A3%(ﬂ = - {c+tq) (4.8)

with (v, (tJ+1))1 0. Thus
)sﬁ = - (c+tq) (4.5)

C[xj(t) (t t, )51] + A}[v (t) + % (t-t.

j+l j+1

and
(v(t) +og(t-tyq)sp)y = (vi{ty))y + Tt- ti413(9p5 + 94 S2),

i

[t- t3+1](( )] +a,(sp);) = 0.

Therefore, it follows from (4.4), (4.5) and the Kuhn-Tucker-conditions that

xj(t) - fo(t- tj+1)s1 is an optimal solution to (4.1). By the first part of

the lemma it is the unique optimal solution.

Lemma 5

If MO is a nonsingular matrix, then every matrix

determined by the al-~grithm is nonsingular.

- 19 -
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Proof:
Suppose that, for some j , M. is nonsingular. Because of Lemma 2 we

know that then the columns of A3 are linearly independent and x'Cx > 0
for every x # 0 with

KeTy - {x'ij=o}

Similarly, it follows from Lemma 2 that M is nonsingular if the columns

j+1
of A3+1 are linearly independent and x'Cx > 0 for every x # 0 with

X € Tj+1 = {x |Aj+1x = 0}

Without Toss of generality we may assume that

A:j = (al,...,a\)) .

First assume that Step 2 of the algorithm is used in the j-th cycle. Then
(w) =( Mlj ,r%j) (ak) ] Mlj ak)

Cw + Aé Z = a

and

If w+ 0, then A3+1 = (al,...,av,ak) . .

If w=0, then Aj+1 = (al,...,a1_1,ak,a1+1,...,av) with (z)1 + 0.
In both cases it follows immediately that the columns of A3+1
independent. Furthermore, x'Cx >0 for every x £+ 0 with x € Tj+1

are linearly
because TJ.+1 = Tj .

Next assume that Step 3 of the algorithm is used in the j-th cycle. If

! -
AJ+1 = (31,---,31_1,31”,...,av)

then &+ 0 . The columns of A} are linearly independent and it follows

j+1
from Lemma 4 that x'Cx >0 for x+£0, x€ Tj+1 . If
Ajrr = (Qpaeeiayppageaygeia)

then ale <0 .

- 20 -




Since a% Sy ° 0, id=1,...,v, 1 # 1, the columns of A3+1 are linearly
independent. Furthermore,

1]

X € }j { x’ a%x =0, d=1l,...,v, 1 # 1}

and x'Cx =0 dimply x = ) for some X . Since Tj+1 = ?j n {x?aix =0
and 3 sy < 0 the vector Sy is not an element of Tj+1 . Thus x € Tj+1
and x # 0 imply x'Cx> 0.

The next Temma shows that the termination of the algorithm with Step 2
or 3 implies that tae given problem has no optimal solution for t > tj+1 .

Lemma 6

i) If the algorithm terminates with Step 2 in the j-th cycle, then

the problem (2.1) has no feasible solution for any t > ‘cj+1 .

ii)  If the algorithm terminates with Step 3 in the j-th cycle, then

the problem (2.1) has no optimal solution for any t > tj+1 .

Proof:

i) We have a = A3 Z, z<0 and, by the definition of &k ,
a hlj = (b)), + tj+1(p)k s A th > (0} -
Llet t > tj+1 and Aj X < bj + tj Py + (t-tj) ps - Then

and

a&(hl.-

jT =t hys) > (b)) +

J
Therefore,

> (b)k + tj(p)k + (t-tj)(p)k .

ii) Without loss of gererality we may assume that Aﬁ = (al,...,aw) and 1=,
By the definition of 1 we have

(vj(tj+1))] = 0 and (qzj)1 < Q.

e —————— . e




Furthermore, let S1 and S» be defined as in the proof of Lemma 4. Then

SiCSl = =W = 0.

Because ( 1is positive semidefinite this implies C Sq = 0 . Thus for any
t > tj+1 » We have

or
- sjlerta) = (vi(R))y = (9g4)y + (B-t5,1)(gp5)y < 0.

Furthermore, since IAj =@ and I5j =@ it follows that a% Sy 2 0 for

i=l,...,m ., Thereforé, if for any ¢t >tj+1 , there is a feasible solution

X , say, then

aﬂ%-ﬁsﬂ < (b).

S+ t(p), forall 020

and 1i=1,...,m . Moreover,

(c+ta) (k=75 +5 (x-a5;) C(X-05)) =

(c+£q)'§ +-%§'C§ -c(c+%qrsl+—w as o > o

The main difficulty in showing the finite termination of the algorithm
is to prove that for every j for which the union of the critical sets Ilj

and I?j is not the empty set there is some jl > 0 such that Ilj U IZj =p.
This is done in the following three lemmas. 1 L

Lemma 7

For every jo with I1j £+ @ there is jl > jo with I1j1 =P .
0

There is a largest integer j* > j_  with

'JO
*

Ilj #0, J=igsdgtlsaand
and

a, & span {ai ti € J(xj*) } s

vhere k is the index determined in Step 1.1 of the alqorithm, Set j = j* + 1

H




and let D be any matrix such that (Ai ,D') s a nonsingular (n,n)-matrix
and every column of D' s orthogonal to all columns of AE . Define the
set of integers 1 1in such a way that i € I if and only if

al x.(tj) = (b)i + tj(p)i (4.6)
and

a; € span {ai l ie J(xj)} . (4.7)

P

Finally choose any t > tj and consider the following linear programming
problem

max {(bj+tpj)' ez () t(p)ﬁ)ki}

subject to the constraints

Ajv+Dy+ 1.glaixi = -(c+tjq)-ij(tj)

We will apply the simplex method with Bland's [1] minimum index rule to
this problem,

First we observe that (Aj » D) s a basis matrix for this problem. The

corresponding basic solution is v = vj(tj) , y=0. Inorder to determine

the new basic variable we compute

and

\i = (b),i +t(p)' ‘a'-X, ieI .

If 1y 2 0 for all i el , then the current basic solution is optimal. If

at least one o is negative, then \k w11} become the new basic variable,

where
. 1
o= ming iel |xi<of. (4.8)
Because x and xj(t) are solutions to the equations Aj x = b, 4 tDj ,
we have Aj(i-xj(t)) =Y. Thus it follows from (1.7) that )
- 723 -
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ay = (b)y + t(p); - 3y xj(t) , 1€l (4.

Since x.{t) = hlj + (t- tj)hz. we deduce from (4.6) and (4.9) that

J J

a; h2j - (p)i >0 for every i€ 1 with ay < 0.

Therefore, every i € I with ay < 0 1is an element of the set I]i . Since
by the definition of j* , the index k determined in Step 1.1 of the
algorithm is an element of the set I , it is identical with the k selected
by (4.8).

In order to determine the basic variable that will leave the basis we

M 1
Yy = (A& , D) I

Frem (4.7) we deduce that Yo = 0 and Yy =2, where z = M3j ay is the

compute

vector determined in Step 2.1 of the algorithm as part of the solution to the
equations

3
0.

Cw+ A2
J

it

Ajw

>
>

Defining the set I such that i € 1 if and only if

(2), V),

vwe obtain the index of the basic variable that will leave the basis as follows

1 = min { o I i€ i } .

This index is the same as the one determined in Step 2 of the alcerithm.

The above results show that, for j = j* + 1, I1j =P if and only if
vV = Vj(tj) » ¥y =0 1is an ontimal basic solution to a linear maximization
problem. If I1j + P , then (Af].+1 , D') is the basis matrix obtained by
performing one iteration in the simplex method. The corresponding basic

solution is optimal if and only if I? el ° @ . Repeating this argument and
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observing that by Bland's rule the simplex methods determines on optimal
solution in a finite number of iterations we deduce that there is jl > jo
with Iljl =0.

Lemma 8

For every j , Ilj P and IZj # 0 imply 11,j+1 =0,

Proof:

Let s, = (sz)] and Sy = (M4j)1 . Then (s1 ,52) satisfies the equations

C Sy *+ A3 52 = 0

(4.10)
Aj Sl = ej )
where (ej)i =0, i+1, and (ej)T =1,
Furthermore,
Xj(t) = hlj + <t-tj)h2j s Vj(t) = glj + (t’tj>92j
are determined as the unique solution to the equations
Cx-+A3v = - (c+tq)
Aj X = bj +t pj .
Without loss of generality we can assume that
A& = (al,az,...,av) and 1 = v .
Then
Vianlt) =9y e * (P 50)9 50
is the unique solution to the equations
Cx + A3+1v = =~ (c+tq)
A (4.11)
j41 % = byt t Py

where A3+1 = (a7,...,a,_y) or A3+1 = (31,...3,,3,) or Aj+1 = (21,003 _159) >

denending on which part of Step 3 of the algorithm applies. Because I2j £+ 0 we

have tj+l = t,

i

- 725 -




Case 1:

I4j + @ and To = 0.
Since a& h2j - (p)k 0, it follows that
aL Xj(t) = (b)k + t(D)k + (t- tj)(p)k (4.12)

for all t .

If Mlj a, * 0, then A!

is a solution to (4.11). Th
secondary active constraint

a3 Ny 41 = (P)y = g hpy - () =0,
i.e. Il,j+1 = .
Now assume that Mlj 3 =0 . Then A3+1 = (ag5...52 _1s2,) and
a = A3 z with z = sz a . Since (2)] = z'Aj Sy = al'(s1 £ 0, we can define
N (91’)
(815); = (919)5 - —t (2)5+ d=li..vel
(2)1
~ (glj)1
(glj)1
(2)]
A (95:)4
(05505 = (9p5)5 = === (2)5» i=l,i..pv-1
(z)4
~ (QZj)]
(gzj)]
(2)1
Then
Aj+1 vj(t) = A vj(t) , vj(t) =5t (t- tj)gzj (4.13)
Therefore, it follows from (4.12) and (4.13) that xj(t) s Qj(t) is a solu-

tion to (4.11). Thus

ol b

= (Aj ,ak) and it follows from (4.12) that

585 0)

j+1
xj(t) s (v

us xj+1(t) = xj(t) . If i s the index of a
, we have, therefore,

2% -

N




t) = xi(t) (4.14)

and Il,j+1 =0 .

Case 2:

>0, w#+0, and

(I4j =P and w #+0) or (I4j £0, o

(923)1 /(.U < T) .

In this case we have A3+1 = (al,...,av_l) . With

(954)
0g = 21, o - (Mg3)17 = (sp)

w

we have
(Vi(1))) = o(t=t5)(sp)y = (t-t5)((9p5) = 0o(sp)y) = O .

Let Qj(t) and §2 denote the vectors obtained from vj(t) and 5o
respectively, by deleting the 1-th component. Then

satisfy the equations (4.11). Indeed,

and
C %(U +A3vﬂt) = - (c+tq) .

By Lemma 4 we have, therefore, xj+1(t) = xj(t) - co(t- tj)s1 which implies

hl,j+1 = hlj and h2,j+1 = h2j 9% Sq (4.15)
Furthermare, (gzj)1 <0 and

w = (Sp)y = Sy Aj S, = - 570s; <0 (4.16)
imply "o T (923')]/‘ > "
- 27 -
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Now let i be the index of any secondary active constraint. If

a% Sy 2 0, then

ai hy 541 - (P)y = @ hg5 = (P)5 - 06 3 5

< a; h2J - (p); = 0 %
If ajs; <0, then i€l and :
a} hy 51 7 (P)y = 3 Mgy = (P)y - % 35 5
o (P)y - 2 hoy
= a;, S -0
1 - als 0
i”1
< al sl(To-oo)<O. w
Therefore, Il,j+1 =0 .

Case 3:

(I4j +0, 1,2 0, w=0) or (I4j +0, 1, 0, w=#+ 0, and
(923)] Jw = To) .

In this case A3+1 = (al,...,av_l,ak) . With the same arguments as in

the previous section it can be shown that xj+1(t) = xj(t) - Tt tj)s1 , i.€.

Let i be the index of a secondary active constraint. If ai Sq >0, then

ay hy syq = (P)y = 3y Mgy = (P)y = %5 35 5

< a th (p)1 <0
If a; Sy < 0, then 1€ I4j and
aj hy up - (p)g = aj hpy = (P)y = 7o 35 5
(p)1 a; h2
- J .
= al 51 ( o o] S 0
_ i1
Hence, 11,3+1 =@,
- 28 -




Case 4:

I4j =P and w=0. In this case Step 3.3 of the algorithm applies
an
A3-+1 = (al,...’a\)_lgak) .
Because w = 0 the equality (4.16) implies sic S = 0 which, for the positive
semidefinite matrix C , is equivalent to Cs1 =0 . Thus

Furthermere, by the definition of 1 in Step 3.3 of the algorithm
aL(xj(t) -1y 59 = (b)) + tj(p)k .
Therefore, it is not difficult to show that
xj+1(t) = Xj(t) - Tl Sl - (t'tj) T2 Sl

is a solution to (4.11). Hence we have

T P I T R S UL P S TP i A N (4.18)
Let 1 be the index of a secondary active constraint for xj+1(tj+1) .
If this constraint is also a secondary active constraint for xj(tj) , then

[} - :
a; $1 0, fi.e.
]

33 hg 541 = (P)j =35 My - (P); <O .

If the i-th constraint is not a secondary active constraint for xj(tj) >
then 1 € I6j and

h

33 N 501 7 (P)j = 33 M5 = (P)y = 75 85 5y

Therefore, Il,j+1 = Q.
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Lemma 9

For every jo with Il'

i = @ and I2j %+ @ there is j1 > jo such

that 0 °
IlJ = p, j=josj0+19---rj1
12j £ 0, j=josj0+1’---:j1'1’ Izjl = p.
Proof:

If Ilj = and I,j ¢ P then Step 1.2 and Step 3 of the algorithm are used

to determine the matrix Aj+1 and MJ.+1 . With tj+1 = tj and

X5p1(t) = hy s+ (E-t50) Do 5y

it follows from formulas (4.18), (4.17), (4.15), and (4.14), rospectively, in
the proof of Lemma 8 that

h19j+1 = hlj - Tl Sl ’ h2,j+1 = h2j - T2 51 s Tl >0 (4.19)
or

h = hlj Py hz’j+1 = hzj - 051 s 0O = m'in{Oo, To}> 0 (4.20)

1,j+1
or

h h h (4.21)

1,i+1 15 » M2,j+l 25

Each vector (hlj’ h?j) is uniquely determined by a submatrix A, of A.

J
Thus there are only finitely nany different vectors (hlj’ h?j) .

First assume that (h1 3412 h2 j+1) is given by (4.19). In this case
si Cs1 = 0 and, therefore, C Sy = 0 . Hence it follows from

)
—
<
—
(o

- ' . = ! . ! Ly, . = . : = . =
sjlc+tyq) = s Cx(ty) + syAyvy(ty) 5{ts))y = (9450 = 0

and the equalities

Cr (t~t. . . . -t. ! , = - . - -t. .22
Ch1J {t tJ)ChZJ +A3q13 + (t tJ)AngJ (c+th) (t tJ)q (4.22)
that
Therefore, vie have

q‘hl,J+1 = q'hlJ - 1 ""Sl < q'hlj .
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This implies that (h1 J+1 s 2 j+1) is determined by (4.19) for at most
finitely many Jj .

Next suppose that h2 41 is given by formula (4.20). Then siC sy > 0
and it follows from (4.22) that

- q‘Sl - h'szSl = g|2j AJ- 51 = (ng)1 <0.

With Q(hzj) = q‘h2j +~% héjc h2j we have, therefore,
2
Q(hZ,j""I) = (th) - U(q Sl+h2JC 51)+ SICSI

2
Qlhyz) + o(gps)y + 22- s1Csq -

Because (92j)1 <0, we have
(ng)]

o2
0(923)1 S Cs1 <0 for 0<oc< o Ce
1t

By (4.16) , - siC S = w . Furthermore,

s T >0 .
o !

Thus Q(h2 j+1) < Q(hzj) . In conjunction with the previous results this implies
’
that h2 341 is determined by (4.20) for at most finitely many J .

In order to complete the proof of the lemma it suffices, therefore, to show that
for at most finitely many consecutive indices Jj we have

h h (4.23)

2,j+1 23 °

It follows immediately from Step 3.1 and Step 4.1 that for every 3 with
. . *
h2’3+1 = hzj , there is a largest integer j  such that

*

hy ja1 = gy s 3=3sd+leensd
and (
. 1
a, € span 1 a; iw €J (xj*)(

N T T




where k 1is the index determined in Step 1.1 of the algorithm. Define the
set I of integers in such a way that i € I if and only if

a% xa(ta) = (b)i + t:]}(p)i
and
a; € span { a; , i€ J(xa) } .

Furthermore, define
P - { i|ieaxy, (913)%3_ =0 with =

Set
d = q+¢C hZJ

and consider the minimization problem

at h = (p); , i€ d(xz) -1 :
min {d'hl i i AL } , (4.24) ;
h a% h + Ay o= (p)i s A: 20, 1€elul
We apply the simplex-method with Bland's (1] minimum index rule to this
problem. An initial basic feasible solution is given hy

Ay =0, el
For any v € f let Ev be such that

als = 0, die€dxz), is+v
TV J (4.25)
al s, = 1.

Substituting h23 - A gv into the objective function we observe that » s a
candidate for a basic variable if

- d'sv = - (q' + h2J ) <0
Replacing j with 3 in (4.22) and using (4.25) we obtain
- (q" + héﬂ C)s, (n23)v .

This implies that A will become a basic variable, where 1 1is the same index
as the one determined in Step 1.2 of the algorithm. Thus 51 =8y as defined by
Step 3.1 cof the algorithm.




A basic variable Xi is a candidate for becoming a nonbasic variable if
-ajs;>0. If, forall i€l,

~

then the new basic solution is different from h,a . If, for some i€ 1,

- a% Sy > 0 and xi = 0

then i € 143 and xk will become a nonbasic variable, where k is the
index determined in 3.1 of the algorithm

*
Thus every iteration of the algorithm such that j=J + 1 and h, h

2,3+1 7
is equivalent with an iteration of the simplex method applied to (4.24). By

23

Bland's rule this implies that there are at most finitely many consecutive
such that (4.23) holds.

Using the above results we can now establish the main theorem.

Theorem

The algorithm determines a finite number of parameter values tootys-eont

and vectors hlj , h j=0,1,...,uv=1 , such that

2i°
i) t=t sty <...o<t .
iji)  For j=0,1,...,v-1,
= -t . imal solution to the problem
xj(t) hlj + (t tq)th is an optima i p
(2.1) for all t with tj <t< tj+1 .

iii) Either t >t or (2.1) has no optimal solution for any t >t .

Proof:

It follows from Lemma 7 through 9 that, for every Jj , with tj = tj+1 , there
is some j1 > j such that

ot
L]
[ad
"
n
pes
A
+
+
—
—
+
rJ
N
S—

Furthermore, for every j ,

>
—
(m
S
i
>

RSN Y Y ey




is uniquely determined by the matrix Aj whose columns are the gradients
of the primary active constraints. Since by the definition of tj+1 the
vector xj(t) is not an optimal solution to (2.1) for any t > tJ.+1 it
follows from (4.26) and the fact that there are only finitely many different
submatrices A5 of A' that the algorithm terminates with some tv . If

t < t, termination occurs either with Step 2 or with Step 3 of the
algorithm in which case Lemma 6 asserts that the given problem has no optimal

solution for any t > tV .
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